CCLXXX.-Optical Activity and the Polarity of Substituent Groups." Part IV. sec.- β-Octyl Esters of o-, m-, and p-Methoxy- and Nitro-benzoic Acids.
By Harold Gordon Rule and Annie Hutton Numbers.
In previous communications it has been shown that the rotatory powers of derivatives of optically active alcohols reveal the existence of at least two distinct types of substituent effect. Among l-menthyl esters of mono-substituted acetic acids (Rule and Smith,
J., 1925, 127, 2188) the influence of a number of simple substituents agrees closely with what has been termed the general polar effect of the groups, as observed in their influence on acidity, reaction velocity, and molecular inductive capacity (Rule and Paterson, ibid., p. 2159).

Among the numerous menthyl esters of $o-, m$-, and p-substituted benzoic acids examined by Cohen, however, this relationship does not hold. In this case Cohen (J., 1914, 105, 1895) observed that the facts could not be explained on the basis of Frankland's leverarm theory, and drew the conclusion that the element or group lying nearest to the asymmetric atom produces the greatest effect, which according to the nature of the group may be an increase or decrease in rotation value, and that this value approaches the normal for the unsubstituted compound the further the substituent is removed from its proximity to the asymmetric group. It has recently been pointed out (Rule, J., 1924, 125, 1122) that those o-substituents which raise the rotation of menthyl benzoate are m-directive in their effect on substitution in benzene, while those which depress the rotation are o-, p-directive, and that the relative effect of different substituents is in agreement with their relative polarity as deduced from the views of Sir J. J. Thomson and with their relative influence on benzene substitution as we pass from the strongly m-directive or positive nitro-group to the strongly o-, p-directive or negative fluoro-group (see also Rule and Smith, this vol., p. 553). A similar group effect appears to exist among certain simple aliphatic derivatives of active amyl alcohol.

Generally speaking, the esters of the cyclic alcohol, menthol, behave in a remarkably regular manner when examined from the point of view of optical activity. The majority of these compounds exhibit normal and apparently simple dispersion over the usual working range of wave-length, and their rotation undergoes iittle alteration with change of solvent and temperature. It was therefore cousidered of interest to investigate the influence of substituents on certain esters of sec. β-octyl alcohol, since these compounds are known to be much more sensitive to alterations in molecular structure and external conditions (compare Pickard and Kenyon, J., 1914, 105, 837 ; Hunter, J., 1924, 125, 1389).

Esters of active octyl alcohol with o-, m-, and p-methoxybenzoic and nitrobenzoic acids have now been prepared, and their rotatory powers in the homogeneous state determined at temperatures between 20° and 95°. In the case of the methoxybenzoates, the values were measured for the D line and for the yellow, green, and violet mercury lines. Owing to the yellow colour of the nitroderivatives, it was not found possible to obtain satisfactory readings
for these compounds with the violet line, but readings over the range λ_{D} to $\lambda_{D 1}$ were also taken using a 5% alcoholic solution. The values of $[M]_{\mathrm{D}}$ and $\alpha_{\mathrm{v} i} / \alpha_{\mathrm{D}}$ found for the esters at different temperatures are summarised in the following tables.* Figures referring to light of other wave-lengths and to other rotations in solution are given in the experimental portion of this paper.
I. Molecular Rotations and Dispersion Ratios of the Homogeneous Esters.

d- β-Octyl Methoxybenzoates.						
Temp.	o-Compound.		m-Compound.		p-Compound.	
	[M] ${ }_{\text {d }}$.	$\alpha_{v i} / \alpha_{p}$.	$[M]_{\mathrm{D}}$.	$\alpha_{\mathrm{vi}} / \mathrm{a}_{\mathrm{d}}$.	$[M]_{0}$.	$a_{v i} / a_{p}$.
20°	$+33.27^{\circ}$	1.513	$+93.73{ }^{\circ}$	2.084	$+113.3^{\circ}$	2.147
40	$37 \cdot 31$	1.663	92.77	2.086	112.2	$2 \cdot 149$
60	$40 \cdot 82$	1.770	91.61	$2 \cdot 090$	111.0	$2 \cdot 150$
80	$44 \cdot 00$	1.852	90.42	2.096	$110 \cdot 0$	2.149
90	$45 \cdot 38$	1.895	89.82	2.097	$109 \cdot 4$	$2 \cdot 151$
$[M]_{\mathrm{D}}$ for d- β-Octyl Nitrobenzoates.						
Temp.	$o-\mathrm{Co}$	ound.		ound.		Compound. $[M]_{\mathrm{D}} .$
20°					$\left(30^{\circ}\right)$	117.8°
40						115.9
60						112.3
80						109.6
90						108.8

For d - β-octyl benzoate Pickard and Kenyon (J., 1915, 107, 122) find $[M]_{D}^{20^{\circ}}=+77.84^{\circ}$.

$$
\begin{aligned}
& \text { Rotations of Nitrobenzoic Esters in 5\% Alcoholic Solution } \\
& \text { (at about } 20^{\circ} \text {). }
\end{aligned}
$$

Dispersion.

When the reciprocal of the rotation is plotted against the square of the wave-length, a straight line is obtained for the homogeneous m-methoxy-compound at all temperatures and for the p-methoxycompound at the two lower temperatures of experiment. It may therefore be concluded that the dispersion of these esters under the conditions stated is normal and apparently simple. The o-methoxy-ester exhibits complex dispersion, which is especially

[^0]marked at the lower temperatures employed, and the dispersions of the o-nitro-compound also are complex, although the graphs of $1 / \alpha$ against λ^{2} for the m - and p-isomerides in alcoholic solution approximate very closely to straight lines.

Both o-derivatives have abnormal dispersion ratios, the value of $\alpha_{v i} / \alpha_{\nu}$ for the o-methoxy-ester being below and that for the o-nitro-ester above the value for the respective m - and p-compounds.

Influence of Suistituents.

As may be seen from the above figures, the introduction of a methoxy-group into the o-position in the benzene nucleus leads to a marked depression in the rotatory power of octyl benzoate, whereas a nitro-group in the same position results in a considerable increase. As in the case of menthyl benzoate,* therefore, the o-, p-directive group produces a depression and the m-directive group an exaltation of rotatory power.

In the m - and p-positions both substituents bring about a rise in the rotatory power of the octyl ester, thus contrasting strongly with their behaviour in the menthyl compound, in which the effect of m - and p-substituents is in most cases negligible.

The values for the $o-, m$-, and p-derivatives are neither in agreement with Frankland's lever-arm hypothesis nor with the electrostatic modification of the latter suggested by one of us; nor do they lend support to the conclusion arrived at by Cohen (loc. cit.) from a study of the menthyl benzoates. It might be expected that the close relationship existing in certain cases between the influence of substituents on optical activity and acidity (Betti, Gazzetta, 1923, 53, 417; Rule and Smith, loc. cit.) would also be evident in the octyl benzoates, particularly among the m - and p-derivatives, in which the strong specific effect of the o-group is absent. A comparison of the rotatory powers of the esters with the dissociation constants of the corresponding nitro- and methoxy-benzoic acids (quoted below) shows that the powerfully acidic nitro-group affects

	0.	m.	p.
NO_{2}	0.62	0.035	0.040
OMe	0.0082	-	0.0033

rotation and acidic strength qualitatively in the same manner, viz., $o-\mathrm{NO}_{2}>p-\mathrm{NO}_{2}>m-\mathrm{NO}_{2}>\mathrm{H}$, although for the resemblance to be complete the rotation of the o-nitro-ester should be much higher

[^1]than that found.* This agreement does not extend to the very weakly acidic methoxy-group, which gives for rotatory powers the sequence p - $\mathrm{OMe}>m$ - $\mathrm{OMe}>\mathrm{H}>0$ - OMe and for acidic strength $o-\mathrm{OMe}>\mathrm{H}>p$ - OM . It is remarkable that in the p-position the otherwise dissimilar nitro- and methoxy-groups produce the same pronounced increase in rotation.

An example of a different type which exhibits some points in common with the above is that of the substituted benzoylcarvoximes (Goldschmidt and Freund, Z. physikal. Chem., 1894, 14, 398).

Molecular Rotations of Substituted Benzoylcarvoximes (in chloroform solution).

Substit.	$0-$	$m-$.	$p-$.	Substit.	$o-$.	$m-$.	$p-$.
Br	$90 \cdot 3$	63.5	51.8	H	-	$71 \cdot 7$	-
Me	$76 \cdot 6$	76.0	66.3	NO_{2}	0	64.9	$\mathbf{5 4 . 4}$

Here the m-directive nitro-group lowers the rotation when introduced into the o-position, and the o-, p-directive bromo- and methyl groups raise the value. The methyl group also increases the rotation in the m-position, but otherwise all m - and p-substituents depress the rotatory power. The case is thus closely analogous to that of the octyl benzoates, except that the changes are in the reverse direction. In passing, it may be noted that the relative influence of the different o-substituents, $\mathrm{Br}>\mathrm{Me}>\mathrm{H}>\mathrm{NO}_{2}$, is in agreement with their relative polarity and their relative influence on the substitution of benzene.

In general, the molecular rotations of the octyl esters fall with rise of temperature, as may be seen from the figures given in Table I. An exception is found in the o-methoxy-ester, the rotation of which increases with rise of temperature.

EXPERIMENTAL.

The active sec. β-octyl alcohol required for this investigation was prepared from the racemic alcohol by the method of Pickard and Kenyon (J., 1907, 91, 2058) as modified later by Kenyon (J., 1922, 121, 2540). It had $[\alpha]_{\mathrm{i}}{ }^{6}= \pm 8 \cdot 14^{\circ}$.

The esters were obtained from the corresponding acids by way of the acid chlorides, the combination of the latter with active alcohol being carried out in the presence of pyridine as a condensing agent. Purification was effected by fractionating the crude esters until of constant rotatory power. In general it was found that no further change in rotation occurred after the first fractionation.

[^2]1- β-Octyl o-methoxybenzoate was prepared from o-methoxybenzoic acid obtained by the oxidation of pure o-tolyl methyl ether. It is a colourless, odourless liquid, b. p. $187 \cdot 5^{\circ} / 13 \mathrm{~mm}$. (Found : C, $72 \cdot 6$; $\mathrm{H}, 9 \cdot 2 . \quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 72 \cdot 7 ; \mathrm{H}, 9 \cdot 2 \%$).
l- β-Octyl m-methoxybenzoate was obtained in a similar manner to the o-compound from m-tolyl methyl ether, which was oxidised to m-methoxybenzoic acid at the ordinary temperature by a $2 \frac{1}{2} \%$ solution of potassium permanganate (compare Oppenheim and Pfaff, Ber., 1875, 8, 887). The acid was purified by repeated crystallisation from ligroin till it melted sharply at 106°. The ester is a colourless, odourless liquid, b. p. $187 \cdot 5^{\circ} / 12 \mathrm{~mm}$. (Found : C, $72 \cdot 6$; $\mathrm{H}, 9 \cdot 3 . \quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 72 \cdot 7 ; \mathrm{H}, 9 \cdot 2 \%$).
l- β-Octyl anisate (from anisic acid) is a colourless, odourless liquid, b. p. $189^{\circ} / 13 \mathrm{~mm}$. (Found : C, $72 \cdot 5 ; \mathrm{H}, 9 \cdot 2 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C, 72.7 ; H, $9 \cdot 2 \%$).

I- β-Octyl o-nitrobenzoate was prepared from o-nitrobenzoyl chloride (Kahlbaum). The pale yellow ester is odourless, and boils at $304^{\circ} / 15 \mathrm{~mm}$. (Found: C, 64.5; H, 7.8; N, 5.2. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}$ requires $\mathrm{C}, 64.5 ; \mathrm{H}, 7 \cdot 6 ; \mathrm{N}, 5.0 \%$).
l- β-Octyl m -Nitrobenzoate.-The starting point in the preparation of this ester was m-nitrobenzaldehyde, which was purified by recrystallisation from ligroin. The m-nitro-ester was obtained as a pale yellow, odourless liquid, b. p. $212^{\circ} / 18 \mathrm{~mm}$. (Found : C, $64 \cdot 6$; $\mathrm{H}, 7 \cdot 6 ; \mathrm{N}, 5 \cdot 3 . \quad \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}$ requires C, $64 \cdot 5 ; \mathrm{H}, 7 \cdot 6 ; \mathrm{N}, 5 \cdot 0 \%$).
l- β-Octyl p-nitrobenzoate (from Kahlbaum's p-nitrobenzoyl chloride) is a pale yellow solid at the ordinary temperature. It was recrystallised from alcohol till of constant rotation. M. p. 29.5-30 (Found : C, 64.5; H, 7.7; N, 5.3\%).

Densities and Rotatory Powers of the Esters in the Homogeneous State.
All rotations were measured in a 50 mm . tube. Densities were determined with the aid of a pyknometer holding between 3 and 4 c.c.

Observed Densities and Rotations.

l - β-Octyl o-methoxybenzoate.

l - β-Octyl p-methoxybenzoate.
$D_{4^{\circ}}^{\mathrm{t}^{\circ}} \quad 0.9940$ at $23.9^{\circ} ; 0.9807$ at $41^{\circ} ; 0.9677$ at $57.9^{\circ} ; 0.9488$ at 81.8°.
$a_{\mathrm{D}} 21.33^{\circ}$ at $21.5^{\circ} ; 20.87^{\circ}$ at 39°; 20.22° at $65 \cdot 4^{\circ}$; 19.42° at 93.7°.
$a_{\text {ye }} 22.33^{\circ}$ at 21.5°; 21.88° at 39°; 21.08° at $65.4^{\circ} ; 20.23^{\circ}$ at 93.7°.
$a_{\mathrm{gr}} 25.56^{\circ}$ at $21.5^{\circ} ; 25.05^{\circ}$ at $39^{\circ} ; 24.16^{\circ}$ at $65.4^{\circ} ; 23.21^{\circ}$ at 93.7°.
$a_{v i} 45.81^{\circ}$ at $21.5 ; 44.80^{\circ}$ at $39^{\circ} ; 43.26^{\circ}$ at $65.5^{\circ} ; 41.75^{\circ}$ at 93.7°.
$l-\beta$-Octyl o-nitrobenzoate.
$D_{4^{\circ}}^{\mathrm{t}^{\circ}} 1.0701$ at $24.2^{\circ} ; 1.0560$ at $41.8^{\circ} ; 1.0407$ at 61.1°; 1.0234 at 82.5°.
$a_{\text {D }} 23.26^{\circ}$ at 23.5°; 22.70° at 38.3°; 21.77° at $65^{\circ} ; 20.98^{\circ}$ at 92.2°.
$a_{\text {ye }} 24.54^{\circ}$ at $23.5^{\circ} ; 23.90^{\circ}$ at $38.3^{\circ} ; 22.96^{\circ}$ at $65^{\circ} ; 21.97^{\circ}$ at 92.2°.
$a_{\mathrm{gr}} 28.88^{\circ}$ at $23.5^{\circ} ; 28.07^{\circ}$ at 38.3°; 26.92° at $65^{\circ} ; 25.90^{\circ}$ at 92.2°.
d - β-Octyl m-nitrobenzoate.
$D_{4^{\circ}}^{\text {º }^{\circ}} 1.0725$ at $24 \cdot 1^{\circ}$; 1.0587 at 41°; 1.0453 at $57.4^{\circ} ; 1.0238$ at 83.8°.
$a_{\text {D }} \quad 20.77^{\circ}$ at 20.0°; 19.81° at 39°; 19.07° at 55.7°; 17.53° at 94°.
$a_{\text {ye }} 21.68^{\circ}$ at 20.0°; 20.76° at $39^{\circ} ; 20.00^{\circ}$ at $55 \cdot 7^{\circ}$; 18.40° at 94°.
$a_{\mathrm{gr}} 24.88^{\circ}$ at $20 \cdot 0^{\circ}$; 23.63° at 39°; 22.79° at $55 \cdot 7^{\circ} ; 21.01^{\circ}$ at 94°.
d - β-Octyl p-nitrobenzoate.
$D_{4^{\circ}}^{\mathfrak{t}^{\circ}} \quad 1.0631$ at $32.9^{\circ} ; 1.0471$ at $52.75^{\circ} ; 1.0384$ at $63.25^{\circ} ; 1.0248$ at 80.1°.
$a_{\mathrm{D}} 22.00^{\circ}$ at 39.1°; 21.05° at 58.4°; 20.22° at 76.5°; 19.75° at 91.9°.
$\alpha_{\text {ye }} 22.99^{\circ}$ at 39.1°; 22.02° at $58 \cdot 4^{\circ}$; 21.21° at 76.5°; 20.64° at 91.9°.
$\alpha_{\mathrm{gr}} 26.44^{\circ}$ at $39 \cdot 1^{\circ} ; 25 \cdot 27^{\circ}$ at $58 \cdot 4^{\circ} ; 24.22^{\circ}$ at $76.5^{\circ} ; 23.65^{\circ}$ at $91 \cdot 9^{\circ}$.
II. Specific Rotations of the Esters in the Homogeneous State.

(For values of [$M]_{\mathrm{D}}$ and $\alpha_{\mathrm{vi}} / \alpha_{\mathrm{D}}$ see Table I.)					
$l-\beta$-Octyl o-methoxybenzoate.					
t.	$D_{4}^{\text {to }}$.	$[a]_{\mathrm{d}}$.	$[a]_{\mathrm{ye}}$.	$[a]_{\mathrm{gr}}$.	$[\alpha]_{\mathrm{vi}}$.
20°	$1 \cdot 0006$	-12.59°	$-12.93{ }^{\circ}$	$-14 \cdot 23^{\circ}$	-19.05°
40	0.9844	$14 \cdot 12$	14.59	16.25	$23 \cdot 47$
60	0.9683	$15 \cdot 45$	$16 \cdot 07$	17.97	$27 \cdot 35$
80	0.9523	16.66	$17 \cdot 37$	$19 \cdot 45$	$30 \cdot 85$
90	0.9443	17-18	$17 \cdot 94$	$20 \cdot 08$	$32 \cdot 55$
l - β-Octyl m-methoxybenzoate.					
20	0.9945	$-35 \cdot 48$	-37.08	-42.33	-73.97
40	0.9785	$35 \cdot 11$	36.65	$41 \cdot 90$	$73 \cdot 27$
60	0.9627	34.67	36-19	$41 \cdot 40$	$72 \cdot 50$
80	0.9467	$34 \cdot 23$	35-70	$40 \cdot 94$	71.77
90	0.9389	34.00	$35 \cdot 47$	$40 \cdot 67$	$71 \cdot 32$
$l-\beta$-Octyl p-methoxybenzoate.					
20	0.9968	- 42.88	-44.90	-51.38	-92.07
40	0.9814	$42 \cdot 47$	$44 \cdot 43$	50.89	$91 \cdot 26$
60	$0 \cdot 9661$	42.03	$43 \cdot 93$	$50 \cdot 31$	$90 \cdot 36$
80	0.9503	$41 \cdot 63$	$43 \cdot 44$	$49 \cdot 84$	$89 \cdot 49$
90	0.9427	41-39	$43 \cdot 20$	49.52	$89 \cdot 02$
		$l-\beta$-Octy	nitrobenzo		

t.	$D_{4^{\circ}}^{\text {¢ }}$.	$[a]_{\text {d }}$.	[a] ${ }_{\text {y }}$.	$[\alpha]_{\mathrm{gr}}$.
20°	1.0735	$-43 \cdot 56^{\circ}$	-46.00°	-54.18°
40	1.0571	$42 \cdot 82$	$45 \cdot 15$	$52 \cdot 97$
60	1.0410	$42 \cdot 15$	$44 \cdot 38$	$52 \cdot 03$
80	1.0251	$41 \cdot 60$	-43.68	$51 \cdot 33$
90	1.0172	$41 \cdot 35$	$43 \cdot 33$	51-08

KANGA, AYYAR, AND SIMONSEN: CONESSINE.
$d-\beta$-Octyl m-nitrobenzoate.

20	$1 \cdot 0758$	$+38.61^{\circ}$	$+40 \cdot 31$	$+46 \cdot 25^{3}$
40	1.0594	$37 \cdot 32$	$39 \cdot 12$	44-59
60	1.0430	36.18	37-97	$43 \cdot 17$
80	1.0266	35-18	36.92	$42 \cdot 02$
90	1.0185	34-74	36.45	$41 \cdot 53$
d - β-Octyl p-nitrobenzoate.				
30	$1 \cdot 0655$	$+42.20^{\circ}$	+44.04 ${ }^{\prime}$	$+50.94^{3}$
40	1.0573	$41 \cdot 52$	$43 \cdot 43$	$49 \cdot 88$
60	1.0410	40.21	$42 \cdot 15$	48.24
80	1.0249	$39 \cdot 24$	$41 \cdot 12$	$47 \cdot 05$
90	$1 \cdot 0168$	38.97	$40 \cdot 75$	$46 \cdot 68$

III. Rotations of Octyl Nitroben:oates ì Alcoholic Solution (approx. 5\%).

	o-Ester	0900 g. il	m-Ester	436 g.	p-Ester	0652 g . in
	100 c.c.).	$l 50 \mathrm{~mm}$.	100 c.c.)	200 mm	100 c.c.)	$l 200 \mathrm{~mm}$.
	$a^{20 \cdot 8}{ }^{\circ}$.	[a].	$\alpha^{20 \%}$	[α_{j}.	a^{929}	[${ }^{\text {] }}$.
a_{0}	$1.42{ }^{\circ}$	$55 \cdot 80{ }^{\text {2 }}$	$3.80{ }^{\prime}$	$36 \cdot 94$:	$4 \cdot 36$	43.04 ${ }^{\text {' }}$
a_{90}	1.69	$66 \cdot 41)$	$3 \cdot 99$	38.79	$4 \cdot 60$	$45 \cdot 41$
$a_{g r}$	1.90	$74 \cdot 65$	$4 \cdot 51$	$43 \cdot 84$	$5 \cdot 19$	51.2\%
$\alpha_{9 i}$	$3 \cdot 83$	150.5	7.7.	$\mathbf{7 5 \cdot 6 3}$	$9 \cdot 38$	92-5!

The authors gratefully acknowledge their indebtedness to the Earl of Moray Research Fund for a grant which has covered most of the expense incurred in this investigation.

University of Edinburgh.
[Received, April 16th. 1926.:

[^0]: * These values are read off from the smooth curves drawn from the experimental figures. In every instance the sign of the rotation is the same as that of the active alcohol from which the ester is derived, and to avoid confusion certain values determined for l-esters are here tabulated-with change of sign-under the corresponding d-compounds.

[^1]: * The rotations of the menthyl esters of α - and β-naphthoic acids are depressed in a similar manner by the introduction of a methoxy-group in the o-position to the carboxylic complex (compare Cohen and Dudley, J., 1910, 97, 1750).

[^2]: * The relatively high rotation of the o-isomeride is much more evident in alcoholic solution, especially when values for $\lambda_{r i}$ are compared.

